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Abstract

Numerical simulations of isothermal and heated turbulent up¯ow of a liquid in a vertical concentric annular channel

with its inner wall heated were carried out. Near-wall two-equation turbulence models were used to close the Reynolds-

averaged momentum and thermal energy equations. In addition, a near-wall explicit turbulent heat ¯ux model was

incorporated. The results reported include mean and turbulence quantities. Comparison with our measurements re-

ported in Part I of this two-part paper is presented. The Reynolds number at the channel inlet ranged from 22 800 to

46 400, and the range of Gr=Re2 at the measurement plane was 0.009±0.078. Buoyancy e�ects which in¯uenced the

velocity and thermal ®elds were observed in the simulation results as they were in the measurements. Ó 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

A number of numerical studies of turbulent ¯ow in

concentric annular channels at isothermal and heated

conditions have been reported. In the following, some of

them are reviewed.

Quarmby [1] carried out an analysis of isothermal

¯ow in a concentric annular channel using the Reynolds

number and radius ratio of the channel as parameters.

Results reported included the friction factor, the velocity

wall laws for the inner and outer walls, and the maxi-

mum mean axial velocity location. Hanjalic [2] simu-

lated isothermal turbulent ¯ow in a concentric annulus

using high Reynolds number versions of the transport

equations for axial turbulent shear stress, turbulent

kinetic energy, and its dissipation rate. The wall

boundary conditions for the mean and turbulence

quantities were imposed by means of a modi®ed velocity

wall law in which the additive constant is a function of

the radius ratio ri=ro. Azous et al. [3] simulated iso-

thermal ¯ow in concentric and eccentric annuli using a

low-Reynolds number two-equation k±s model of tur-

bulence and a mixing length model as closures.

Numerical simulation of the velocity and thermal

®elds in turbulent ¯ow through a concentric annular

channel with its inner wall heated was performed by

Wilson and Medwell [4], and Malik and Pletcher [5].

Wilson and Medwell [4] used the van Driest model of

turbulent viscosity which takes into account the viscous

damping in the near-wall region. A constant turbulent

Prandtl number, Prt � 1, was used for Pr P 0:1 and an

empirical relation for Prt due to Deissler was adopted for

Pr < 0:1. Three di�erent turbulence models to evaluate

the eddy viscosity and a constant turbulent Prandtl

number of 0.9 were used by Malik and Pletcher [5].

Mixed convection ¯ow in channels has been studied

numerically and experimentally by several researchers.

Petukhov and Polyakov [6] presented a comprehensive

discussion of turbulent mixed convection in wall-

bounded ¯ows. They suggested that buoyancy forces

a�ect the velocity ®eld in two ways ± the external e�ect

which acts on the whole ¯ow ®eld because of the non-

homogeneous ¯uid density distribution and the struc-

tural e�ect which arises from ¯uctuating ¯uid density in

the gravity ®eld and modi®es the turbulence directly.

International Journal of Heat and Mass Transfer 44 (2001) 1185±1199
www.elsevier.com/locate/ijhmt

* Corresponding author. Tel.: +1-480-965-1482; fax: +1-480-

963-1384.

E-mail address: roy@asu.edu (R.P. Roy).

0017-9310/01/$ - see front matter Ó 2001 Elsevier Science Ltd. All rights reserved.

PII: S 0 0 1 7 - 9 3 1 0 ( 0 0 ) 0 0 1 5 1 - 4



Nomenclature

A;A� constant, model parameter that

is a function of Pr

Cd1;Cd2;Cd3;Cd4;Cd5 model constants in the �t equa-

tion

C�1;C�2;C�3 model constants in the � equa-

tion

Ck;Ck1 model constant, model par-

ameter that is a function of Pr

Cl model constant

CP speci®c heat at constant pressure

C1t;C2t model constants in the equations

for uit
Dh channel hydraulic diameter,

2�ro ÿ ri�
fw1 near-wall damping function in

the equation for �, exp�ÿ�Ret=
40�2�

fw�t near-wall damping function in

the equation for �t,

exp�ÿ�Ret=80�2�
fk; fk1 near-wall damping functions in

the expression for at

fl near-wall damping function for

eddy viscosity

gi i-component of the acceleration

due to gravity

Gk production/destruction of k due

to buoyancy

Gr Grashof number, bg�T wi ÿ T b�
D3

h=m
2

k turbulent kinetic energy per unit

mass of ¯uid

nj j-component of the unit normal

vector, positive outward from

the wall

P mean pressure

Pk production of k due to mean

shear

Pt production of t2 due to mean

temperature gradients

P �t production of t2 due to mean

temperature gradient in the

streamwise direction

Pr; Prt molecular Prandtl number, tur-

bulent Prandtl number

q00w wall heat ¯ux

r radial coordinate

R� dimensionless radius, �r ÿ ri�=
ro ÿ ri�

Rm radial location of maximum

mean axial velocity

R0 radial location of zero axial

turbulent shear stress

Re Reynolds number, U bDh=m,

based on ¯uid properties at T in

Ret;Re� turbulent Reynolds numbers:

k2=m�; m�� �1=4y=m
Sij mean strain rate tensor,

1=2 oU i=oxj � oU j=oxi

ÿ �
T ; T b; Ts mean temperature, mean bulk

temperature, friction tempera-

ture

T wi; T wo mean temperature at inner wall,

outer wall

t time; also, temperature ¯uctua-

tion

t0, t2 temperature ¯uctuation inten-

sity, variance of temperature

¯uctuation

U ;U b mean axial velocity, mean axial

bulk velocity at channel inlet

U i, Us i-component of mean velocity;

friction velocity, �sw=q�1=2

u2; v2;w2 axial, radial, azimuthal turbu-

lent stresses

ui i-component of velocity ¯uctua-

tion

u0c characteristic velocity ¯uctua-

tion intensity, 2k=3� �1=2

ut axial turbulent heat ¯ux (divided

by qCP)

uit i-component of turbulent heat

¯ux vector (divided by qCP)

uiuj turbulent shear stress tensor

(divided by q)

uv axial turbulent shear stress

(divided by q)

vt radial turbulent heat ¯ux

(divided by qCP)

Wij mean rotation rate tensor,

1=2 oU i=oxj ÿ oU j=oxi

ÿ �
xi coordinates

y; y� coordinate normal to the wall,

nondimensional wall normal

coordinate, yUs=m
z axial coordinate

Greek symbols

a; at molecular thermal di�usivity,

turbulent thermal di�usivity

b volumetric coe�cient of thermal

expansion for ¯uid,

ÿ�1=q��oq=oT �P
dij Kronecker delta

� dissipation rate of k per unit

mass of ¯uid

�it dissipation rate of the turbulent

heat ¯ux vector
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Among the authors who have reported numerical

simulation of turbulent ¯ow and heat transfer in chan-

nels at mixed convection condition using the k±� model

of turbulence but did not include buoyancy e�ects in the

turbulence model are Abdelmeguid and Spalding [7],

Pyetrzyk and Crawford [8], and Cotton and Jackson [9].

Reynolds analogy (i.e., a turbulent Prandtl number) was

invoked to model the turbulent heat ¯ux. Use of a tur-

bulent Prandtl number, typically assigned a constant

value, forces a similarity between the turbulent shear

stresses and the corresponding turbulent heat ¯uxes and

can lead to large errors even in the prediction of the

mean temperature ®eld and integral quantities such as

the wall heat transfer coe�cient. This is especially the

case if the molecular Prandtl number of the ¯uid is

signi®cantly di�erent from unity. Some studies show

that Prt is a function of the molecular Prandtl number

and the distance from the wall, Kays [10]. However,

there is no generally accepted relation for this depen-

dence. Furthermore, direct numerical simulation (DNS)

results indicate that Prt is not constant over the ¯ow ®eld

[11].

To remove the assumption of constant Prt, two-

equation and second-order models of the turbulent

temperature ®eld have been proposed. Two-equation

models provide an isotropic turbulent thermal di�usivity

which depends on the turbulent kinetic energy, its dis-

sipation rate, the variance of temperature ¯uctuation,

and its dissipation rate. The turbulent heat ¯uxes are

then calculated using the gradient transport approxi-

mation. In contrast, second-order models provide an

equation for each component of the turbulent heat ¯ux

vector. From this, it would seem that the more attractive

option is the use of a second-order model. However, it is

known that the order of the turbulent heat transfer

model should be at most of the same order as the tur-

bulence model for the velocity ®eld [12]. Therefore, if a

k±� model is used for the velocity ®eld, the highest order

closure that can be used for the temperature ®eld is a

two-equation model.

On the other hand, if a two-equation model is used

for the thermal ®eld, it is probable that the turbulent

heat ¯ux components will not be predicted correctly. As

an example, our measurements presented in Part I of

this two-part paper show that there occurs a change of

sign in the axial turbulent heat ¯ux across the gap of an

annular channel whose inner wall only is heated, and

that the magnitude of this heat ¯ux component is often

larger than that of the radial component. As a conse-

quence of the gradient transport approximation how-

ever, the two-equation model will predict negative axial

turbulent heat ¯ux across the entire annular gap. Fur-

thermore, since the axial temperature gradient is small

the predicted magnitude of the axial heat ¯ux may be

signi®cantly smaller than its actual value. One way to

remedy this is to use an algebraic heat ¯ux model which

can provide a good approximation to the observed be-

havior of the turbulent heat ¯ux components.

Several two-equation models of the turbulent tem-

perature ®eld have been proposed during the past de-

cade. Among those are the models of Youssef et al. [13],

and So and Sommer [12]. To close the Reynolds-aver-

aged Navier±Stokes (RANS) equations Youssef et al.

[13] used a near-wall k±� model. So and Sommer [12]

used both near-wall second-order and k±� models as

closures for the RANS equations.

Recently, So and Sommer [14] proposed an explicit

algebraic heat-¯ux (EAHF) model which they used in

conjunction with their two-equation temperature ®eld

model [12] to calculate the turbulent heat ¯ux compo-

nents. The EAHF model was derived assuming local

equilibrium turbulence of the velocity and the thermal

~�, � modi®ed dissipation rate of k:

�ÿ 2m ok1=2=oy
ÿ �2

; �ÿ 2mk=y2

�t dissipation rate of t2 per unit

mass of ¯uid
~�t; �

�
t modi®ed dissipation rate of t2:

�t ÿ a o t2

� �1=2
�

oy
� �2

;

�t ÿ at2=y2

l; lt dynamic viscosity of ¯uid, tur-

bulent viscosity

m; mt kinematic viscosity of ¯uid, tur-

bulent momentum di�usivity

H nondimensional temperature,

�T ÿ T wo�=�T wi ÿ T wo�
q density of ¯uid

rk ; r�, rt, r�t model constants in the equations

for: k, �, t2, �t

s turbulent time scale, k=�
swi; swo axial shear stress at inner wall,

outer wall

n near-wall correction to �
equation

n�t near-wall correction to �t

equation

Subscripts

0 reference state; also, zero axial

shear stress location

c radial location where the heated

and isothermal mean axial

velocity pro®les intersect

i, o annular channel inner wall,

outer wall

m.p. measurement plane
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®elds, and incorporated the isotropic turbulent thermal

di�usivity given by the t2±�t model. The EAHF model

was able to capture the anisotropy of the turbulent heat

¯ux components.

We have carried out experiments and computations

in turbulent up¯ow of liquid refrigerant-113 (R-113)

through a vertical annular channel of radius ratio 0.415

at isothermal and heated conditions. At the latter con-

dition the inner wall of the annulus was heated and the

outer wall insulated, Fig. 1. In this paper, the compu-

tational work is reported and its results are compared

with the experimental data presented in the Part I paper.

The RANS and thermal energy equations were the

conservation equations solved numerically. To model

the Reynolds stresses and turbulent heat ¯uxes, equa-

tions for turbulent kinetic energy k, its dissipation rate �,
the variance of temperature ¯uctuation t2, and its dis-

sipation rate �t were introduced in their near-wall forms.

Away from the walls, these equations approach their

respective high Reynolds number forms. Introduction of

these turbulence model equations eliminated the need

for specifying wall functions and turbulent Prandtl

number. In addition, the EAHF model of So and

Sommer [14] was incorporated.

Simulations are reported here for the three-channel

inlet Reynolds numbers at which experiments were

performed, viz., 22 800, 31 500 and 46 400. The range of

the buoyancy parameter Gr=Re2 at the measurement

plane of the channel is 0.009±0.078. Although these are

low values, our measurements displayed features of

Fig. 1. The annular channel.
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turbulent mixed convection. It was, therefore, deemed

necessary to include buoyancy e�ects in the model. To

include these e�ects in the turbulence model, additional

terms along with their near-wall corrections were in-

troduced in the transport equations for k and � as well as

in the EAHF model [15].

2. Mathematical model

2.1. Conservation equations

The Reynolds-averaged equations for mass, mo-

mentum, and thermal energy were the base equations

solved. These equations are, in tensorial notation

oq
ot
� o qU j

ÿ �
oxj

� 0; �1�

q
oU i

ot

�
� U j

oU i

oxj

�
� ÿ oP 0

oxi
� q� ÿ q0�gi

� o
oxj

2lSij

�
ÿ 2

3
lSkkdij ÿ quiuj

�
;

�2�

q
oT
ot

�
� U j

oT
oxj

�
� o

oxj
q a

oT
oxj

��
ÿ ujt

��
: �3�

In the momentum equation, P 0 is a modi®ed pressure

de®ned as P 0 � P ÿ q0gixi. q0 is the density of the ¯uid at

a reference state which was chosen to be the channel

inlet temperature and pressure. In Eqs. (1)±(3) as well as

in the equations presented later, repeated indices mean

summation.

2.2. Closure models

2.2.1. Velocity ®eld

For closing the momentum equations, the Reynolds

stress tensor uiuj has to be provided. uiuj was calculated

on the basis of the eddy viscosity hypothesis

uiuj � ÿ2mtSij � 2

3
dijmtSmm � 2

3
dijk: �4�

The turbulent momentum di�usivity was calculated

from the turbulent kinetic energy k and its dissipation

rate �. The near-wall k±� model proposed by Sarkar and

So [16] was adopted and modi®cations suggested by

Sommer and So [15] to account for buoyancy forces

were incorporated. The transport equations for k and �
are, respectively,

q
ok
ot

�
� U j

ok
oxj

�
� o

oxj
l

��
� lt

rk

�
ok
oxj

�
� qPk � qGk ÿ q�; �5�

q
o�
ot

�
� U j

o�
oxj

�
� o

oxj
l

��
� lt

r�

�
o�
oxj

�
� C�1q

�

k
Pk

ÿ C�2q
�~�

k
� C�3q

�

k
Gk � qn: �6�

In these equations, the production term due to the in-

teraction between the mean and the turbulence ®elds Pk ,

the buoyancy-induced generation term Gk , and the near-

wall correction function n which provides the correct

behavior of � in the region close to the wall are

Pk � ÿuiuj
oU i

oxj
; �7�

Gk � ÿgibuit; �8�

n � fw1

"
ÿ 0:57

�~�

k
� 0:5

�2

k
ÿ 1:5C�1

�

k
Pk

ÿ C�3

�

k
Gk ÿ 2

m
a� m

gib�it

#
; �9�

where �it � 0:5 1� �1=Pr�� � �=k� � uit � nkniukt� �.
The turbulent momentum di�usivity is formulated in

terms of k and � as

mt � Clfl
k2

�
; �10�

where fl is a damping function which incorporates vis-

cous e�ects into the turbulent stresses. Away from the

wall fl has a value of 1 and it tends to zero in the region

near the wall. It is given by

fl � 1

"
� 3

Re3=4
t

#
1� � 80 exp � ÿ Ret��

� 1
� ÿ exp

ÿÿ Re�=43ÿ Re2
� =330

��
: �11�

The model coe�cients for the k±� model are as follows:

Some comments regarding the velocity ®eld modeling

are warranted. First, the external and structural e�ects

suggested by Petukhov and Polyakov [6] are embodied

in qÿ q0� � in Eq. (2) and Gk in Eq. (5), respectively.

Second, calculating the turbulent stresses using Eq. (4)

may not be adequate since anisotropy cannot be ac-

counted for and no distinction can be made between the

Rm and R0 locations. Use of explicit algebraic Reynolds

stress models [17] was pursued to remedy this inad-

equacy. The results obtained were discouraging however.

2.2.2. Thermal ®eld

To close the thermal energy equation it is necessary

to provide the turbulent heat ¯ux components. These

rk r� Cl C�1 C�2 C�3

1.0 1.45 0.09 1.5 1.83 1.5

J.A. Zarate et al. / International Journal of Heat and Mass Transfer 44 (2001) 1185±1199 1189



can be related to the corresponding gradients of the

mean ¯uid temperature by invoking the eddy di�usivity

concept

uit � ÿat

oT
oxi

: �12�

Thus, an expression for turbulent thermal di�usivity at

has to be supplied to obtain uit. We calculated it in terms

of the time scales of the turbulent velocity ®eld k=� and

the thermal ®eld t2=�t, along with the velocity scale k1=2

at � Ckfkk

��������
k
�

t2

�t

s
; �13�

where the damping function fk, which represents the

attenuation e�ect in the near-wall region, is

fk � Ck1 1ÿ fk1� �
Re1=4

t

� fk1 �14�

and fk1 � 1ÿ exp y�=A�� �� �2.

The thickness of the molecular thermal layer in

comparison to that of the viscous layer depends on the

Prandtl number of the ¯uid, determining where the

turbulent transport of heat exceeds its molecular di�u-

sion. As such, the Prandtl number needs to be incor-

porated into the damping function fk. In the model, this

characteristic is represented by A� and Ck1 which con-

tain the Prandtl number as a parameter: A� � 10=Pr for

Pr < 0:25 and A� � 39=Pr1=16 for Pr P 0:25; Ck1 �
0:4=Pr1=4 for Pr < 0:1 and Ck1 � 0:07=Pr for Pr P 0:1.

The temperature variance and its dissipation rate

were calculated by the two-equation model of So and

Sommer [12]. The transport equations are

q
ot2

ot

"
� U j

ot2

oxj

#
� o

oxj
q a

�"
� at

rt

�
ot2

oxj

#
� 2qPt ÿ 2q�t;

�15�

q
o�t

ot

�
� U j

o�t

oxj

�
� o

oxj
q a

��
� at

r�t

�
o�t

oxj

�
� Cd1q

�t

t2
Pt � Cd2q

�

k
Pt

� Cd3q
�t

k
Pk ÿ Cd4q

e�t

t2
�t

ÿ Cd5q
~�

k
�t � qn�t; �16�

where the production term Pt and the near-wall correc-

tion term n�t are given by

Pt � ÿukt
oT
oxk

; �17�

n�t � fw;�t Cd4�
"

ÿ 4� �t

t2
e�t � Cd5

~�

k
�t ÿ �

�2
t

t2

� 2� ÿ Cd1 ÿ Cd2Pr� �t

t2
P �t

#
: �18�

Finally, the model coe�cients are as follows:

The turbulent heat ¯ux components are often evaluated

by a gradient approximation, Eq. (12). From this and

the sign of the turbulent thermal di�usivity (always

positive) it is apparent that for a heated turbulent ¯ow in

which the axial temperature gradient is positive, the

axial turbulent heat ¯ux will always be predicted to be

negative. As mentioned earlier, we adopted the EAHF

model of So and Sommer [14] for closure of the turbu-

lent heat ¯ux components. This model assumes local

equilibrium turbulence for the velocity and thermal

®elds and importantly, is asymptotically correct in the

near-wall region. To account for the buoyancy e�ects,

the modi®cations suggested by Sommer and So [15] were

introduced in the EAHF model. The relations are

uit � ÿat

oT
oxi
� 1

C1t

��������
k
�

t2

�t

s
2mt�

�� � 1� ÿ C2t�at�Sij

� 1� ÿ C2t�atWij

	 oT
oxj
ÿ 1� ÿ C2t�gibt2

�
; �19�

where the model coe�cients are C1t � 3:28 and

C2t � 0:4.

The wall boundary conditions were as follows. For

the momentum equation, the no-slip condition at the

inner and outer walls were used. For k and �, they were,

respectively, kw � 0 and �w � m ok1=2=oy
ÿ �2

.

A constant heat ¯ux at the inner wall and an adia-

batic outer wall were the boundary conditions for the

thermal energy equation in the heated length of the

channel. The wall boundary conditions for t2 and �t

were, respectively,

t2

� �
w
� 0 and �t� �w � a o t2

� �1=2
�

oy
� �2

:

All thermodynamic properties of the ¯uid were

evaluated using the static pressure and temperature

®elds.

3. Method of solution

The ¯ow was assumed to be axisymmetric. The

governing equations were discretized using a ®nite dif-

ference scheme whose accuracy is second-order in space

and time in a structured staggered grid. The discretized

equations were solved by means of the fractional step

method [18,19]. The momentum, thermal energy and

turbulence model equations were solved by a time-

marching algorithm. The convective part of the equa-

tions was solved by the method of characteristics and the

rt r�t Ck Cd1 Cd2 Cd3 Cd4 Cd5

0.75 1.0 0.096 1.8 0.0 0.72 2.2 0.8

1190 J.A. Zarate et al. / International Journal of Heat and Mass Transfer 44 (2001) 1185±1199



di�usion part was treated implicitly. For mass conser-

vation, a Poisson equation for the pressure was solved.

In reference to Fig. 1, a total length of 2.99 m was

simulated of which the ®rst 0.91 m was unheated while

the remaining 2.08 m was heated. It was not feasible to

simulate the entire length at one time due to computer

memory restrictions. As such, the channel was divided

into 13 subsections, each 25 cm long.1 Each subsection

represented the computational domain for one simula-

tion. This approach has a drawback ± if there existed

disturbances downstream of a given subsection, they

could not a�ect the subsection. In other words, the

simulation procedure rendered the Navier±Stokes

equations quasi-parabolic. In each subsection, 49 radial

grid points were used and they were allocated in such a

manner that the point closest to the wall was at y� < 1

for both walls. The distance between two successive grid

points was incremented away from the wall at a ratio of

about 1.23. The axial mesh size was uniform and equal

to 0.0005 m. Three grid points were used in the azi-

muthal direction such that /j�1 ÿ /j � p=320.

A small overlap length between the end of a subsec-

tion and the beginning of the one immediately down-

stream was provided in order that the inlet condition

speci®ed for the downstream subsection was the com-

puted result slightly upstream of the upstream subsec-

tion outlet. This was done in order that perturbations, if

any, in the results at a subsection outlet did not disturb

the computation downstream.

The channel unheated length was represented by four

subsections. Flat pro®les for the mean velocity, the

turbulent kinetic energy, and its dissipation rate were the

inlet conditions speci®ed for the ®rst unheated subsec-

tion. The turbulent kinetic energy was assumed to be a

fraction of the mean ¯ow kinetic energy such that u0c=U b

was about 10% and the dissipation rate was taken to be

�in � k3=2
in =`, ` being equal to 0:05Dh. To ensure that the

results were independent of the inlet conditions for k and

�, u0c=U b was varied between 5% and 15% and ` between

0:02Dh and 0:1Dh. For these ranges of values, no dis-

cernible changes in the results could be observed.

For the ®rst heated subsection, the inlet conditions

for the temperature variance and its dissipation rate

were prescribed as

t2 � t2
��

T��2
s and �t � ���t T��2

s U 2
s =m;

where

t2
�� � k� � k=U 2

s ; �
��
t � 0:5�� � 0:5�m=U 4

s and T��s

� q00w=AqCPUs:

A is a constant and its value must be between 50 and 100

[20]. The value of this constant was set at 75 in our

simulations.

The outlet boundary conditions in all cases were

ow=oz � 0, where w is any ®eld variable. The conver-

gence criterion wasP
wn�1 ÿ wnÿ �2P

wn�1
ÿ �2

< 10ÿ6: �20�

All the simulations reported were performed in a CRAY

C98 computer at Electricit�e de France.

4. Results and discussion

The conditions and experiment numbers for the

simulations reported here are given in Table 1 of Part I

of this two-part paper [21]. In the ®gures that follow, the

numerical results are represented by lines and the ex-

perimental measurements by symbols.

4.1. Isothermal ¯ow

Figs. 2(a)±(c) show, respectively, the radial pro®les at

the measurement plane of mean axial velocity, turbulent

kinetic energy, and axial Reynolds shear stress, and their

comparison with our measurements [21]. The calculated

results and the experimental data have been normalized

by the mean axial bulk velocity at the channel inlet.

It is well known that when Reynolds number in-

creases the mean axial velocity pro®le becomes ¯atter

and its radial gradient increases in the near-wall region.

This behavior can be observed in both the experimental

data and the simulations. The agreement between the

measurements and the simulations is good, except in the

region where the mean axial velocity is maximum or

near maximum, and close to the inner wall. The convex

inner surface renders the measured pro®le fuller close to

it. This feature is not predicted correctly by our model.

Also, the maximum mean axial velocity according to the

simulation is at R� � 0:41 while the measured location is

between 0.44 and 0.45.

The normalized turbulent kinetic energy results are

shown in Fig. 2(b). Since the azimuthal velocity ¯uctu-

ation intensity was not measured, it was estimated as

w2 � 1:5v2 on the basis of the measurements of Brighton

and Jones [22] in obtaining the experimental turbulent

kinetic energy. Both the measurement and simulation

results indicate that the ratio k=U
2

b decreases as Re in-

creases. In the simulations, the location of the peak in

the turbulent kinetic energy shifts towards the wall with

increasing Re. This feature can not be seen in the mea-

surements because the wall was not approached closely

enough (R�J 0:019; y�J 15±25). The location of mini-

mum k is at about the same as where the mean axial

1 The subsection lengths add to 3.25 m. The reason is given

in the next paragraph.
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velocity is maximum. Except in the region close to the

inner wall, the agreement between the calculated and

experimental data is good. It should be mentioned that

the estimate for w2 used in obtaining the measured k

may not be appropriate in the near-wall region since the

anisotropy in the turbulent normal stresses increases

here [22].

Fig. 2(c) shows the axial turbulent shear stress dis-

tributions. The calculated turbulent shear stress distri-

butions are consistently larger in magnitude than the

measured ones. The location near the inner wall where

the axial Reynolds shear stress reaches its maximum

magnitude shifts towards the wall as Re increases in

both the measurements and the simulations, this dis-

placement being more evident in the calculations. Since

uv is obtained in the simulations via the gradient trans-

port approximation, Eq. (4), the location where the

calculated shear stress is zero is the same as that where

the mean axial velocity is maximum, i.e., R�0 ' 0:41. In

contrast, the measured value of R�0 is between 0.42 and

0.43, i.e., the calculated location is slightly closer to the

inner wall than the measured location. It is noteworthy

that neither the experimental nor the calculated zero

shear stress location changes in the Reynolds number

range considered. An axial momentum balance in the

channel yields the relation

swi

swo

� ro R2
0 ÿ r2

i

ÿ �
ri r2

o ÿ R2
0

ÿ � : �21�

Eq. (21) indicates that the ratio swi=swo is invariant. The

ratio is found to be equal to 1.11 using the calculated

value of R0. The ratio becomes equal to 1.17 when the

measured R0 is used.

Fig. 2. Results for isothermal ¯ow: (a) mean axial velocity; (b) turbulent kinetic energy; (c) axial turbulent shear stress (divided by q).
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The measured maximum value of the structural

parameter ÿuv=k� �2 ± and hence Cl ± in the annular

channel is 0.07. The value of this constant is 0.09 in the

k±� turbulence model. This may explain some of the

di�erences between our calculations and our measure-

ments.

4.2. Heated ¯ow

Figs. 3±9 show the comparison between the simula-

tion results and the measurements for heated turbulent

¯ow in the annular channel. The velocity ®eld quantities

are presented in Figs. 3±5 while Figs. 6±9 show the

quantities for the thermal ®eld. The same three inlet

Reynolds numbers are considered. Two di�erent heat

¯uxes were imposed at the inner wall for the Reynolds

numbers of 22 800 and 31 500. Only one wall heat ¯ux

was imposed for the Reynolds number of 46 400. For

comparison, the isothermal ¯ow results have been in-

cluded in the velocity ®eld plots.

4.2.1. Velocity ®eld

The mean axial velocity distribution is shown in

Figs. 3(a)±(c). The nonisothermal distributions are dis-

torted with respect to the isothermal ones, the ¯ow with

the lowest Reynolds number and highest wall heat ¯ux

being distorted most pronouncedly, Fig. 3(a). At each

Reynolds number, the pro®les are monotonically shifted

towards the heated wall with increasing wall heat ¯ux, as

is the location of the maximum mean axial velocity. Two

radial regions can be identi®ed in the calculated and

measured mean axial velocity pro®les. The ®rst is the

region between the inner (heated) wall and the location

where the nonisothermal pro®le crosses the isothermal

Fig. 3. Mean axial velocity for isothermal and heated ¯ows: (a) Re � 22800; (b) Re � 31500; (c) Re � 46400.
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one, R�c . The extent of this region increases with Rey-

nolds number at any given wall heat ¯ux. Also, the mean

axial velocity increases with the parameter Gr=Re2 in this

region. To satisfy continuity, the mean axial velocity

must decrease somewhere else in the pro®le. This occurs

in the second region which is delimited by R�c and the

outer wall. Note that the pro®les merge as the walls are

approached in both regions, the locations where the

merging begins being farther from the walls as the

Reynolds number increases. The agreement between

the simulation results and the measurements is good

considering the uncertainties of the measurements.

The calculated and measured axial turbulent shear

stress radial pro®les are compared in Figs. 4(a)±(c), uv
having been calculated as ÿmt oU=or

ÿ �
. Buoyancy mod-

i®es the balance between the forces acting on the ¯uid

across the channel resulting in a more asymmetric dis-

tribution of uv compared to isothermal ¯ow at the same

Reynolds number. As Gr=Re2 increases, the zero uv lo-

cation shifts toward the inner wall, causing the magni-

tude of uv to decrease in the region r < R0 and increase

in the region r > R0. The calculated and measured uv
pro®les exhibit similar trends although the calculated

values are consistently larger in magnitude. The

measurements indicate that the distance �Rm ÿ R0� in-

creases with Gr=Re2 but this feature could not be cap-

tured in the calculations.

The turbulent kinetic energy radial pro®les are shown

in Figs. 5(a)±(c). As in the Part I paper, the experimental

k is evaluated as �u2 � 2:5v2�=2. Both the calculated and

the measured radial distributions become more asym-

metric in the heated ¯ows. The minimum-k location

shifts monotonically toward the inner wall with in-

creasing wall heat ¯ux. In comparison to isothermal ¯ow

at a speci®c Reynolds number, the calculated k in the

heated ¯ow decreases in the region 0:05 < R� < R�0 and

Fig. 4. Axial turbulent shear stress (divided by q) for isothermal and heated ¯ows: (a) Re � 22800; (b) Re � 31500; (c) Re � 46400.
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increases in R�0 < R� < 0:9. Good agreement is seen be-

tween the calculated and measured pro®les radially

outboard of where k is minimum. To the left of the

minimum-k location, while the measurements exhibit the

same trend as the simulation results the magnitudes

di�er somewhat. It also appears that, at least at the

present conditions, heating does not a�ect the distribu-

tion of k very close to the inner and outer walls in either

the experiments or the simulations.

A discussion of the e�ect of buoyancy on the velocity

®eld is provided in Part I of this paper. It remains per-

tinent to the simulation results reported here.

Recall that uv is calculated as ÿmt�oU=or�. Some

improvements will be necessary here. It may be appro-

priate, for instance, to introduce an additional damping

function in the equation for the turbulent momentum

di�usivity, Eq. (10), or add terms in Eq. (4), to properly

account for the external and structural e�ects on the

axial turbulent shear stress.

4.2.2. Thermal ®eld

The results for the turbulent thermal ®eld are pre-

sented in a manner di�erent from that for the velocity

®eld. The separate e�ects of Re and Gr on the calculated

and the measured radial distributions of the mean tem-

perature, temperature ¯uctuation intensity, and radial

and axial turbulent heat ¯uxes are scrutinized. Some

results are presented in dimensional as well as nondi-

mensional form.

Fig. 6(a) shows the mean temperature distribution in

dimensional form for the lowest inlet Reynolds number

(22 800) at the two inner wall heat ¯uxes. The agreement

between the calculated and the measured ¯uid tem-

perature is good. Three values of the inner wall

Fig. 5. Turbulent kinetic energy per unit mass of ¯uid for isothermal and heated ¯ows: (a) Re � 22800; (b) Re � 31500;

(c) Re � 46400.
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temperature are shown for each case ± the simulation

value, the measured value, and the value obtained from

a correlation due to Hasan et al. [23]. The simulation

value for the higher wall heat ¯ux case appears to be

signi®cantly low. The mean temperature pro®les for the

three inlet Reynolds numbers at inner wall heat ¯ux of

16 000 W=m2 are compared in Fig. 6(b). The calculated

pro®les exhibit some di�erence from the measured pro-

®les beyond R� ' 0:4. Fig. 6(c) shows the nondimen-

sional mean temperature pro®les for the cases shown in

Figs. 6(a) and (b). In the calculated and measured dis-

tributions the molecular thermal sublayer thickness de-

creases when the Reynolds number increases and the

nondimensional pro®les becomes slightly ¯atter.

The e�ect of increasing inner wall heat ¯ux on the

temperature ¯uctuation intensity at inlet Reynolds

number of 22 800 can be observed in Fig. 7(a). In

Fig. 7(b), the calculated and measured temperature

¯uctuation intensity pro®les at inner wall heat ¯ux of

16000 W=m2 are compared for the three Reynolds

numbers. The measured values are higher than the cal-

culated values in all cases although their trends are

similar. One feature of the measurement that is not

captured correctly by the simulation is the close to linear

distribution shown by the measured pro®les over the

region 0:15 K R�K 0:4.

The pro®le of radial turbulent heat ¯ux at inlet

Reynolds number of 22 800 is shown in Fig. 8(a) for the

two inner wall heat ¯uxes. The agreement between the

numerical results and the measurements is good except

close to the heated wall. The undermeasurement of vt
near the wall was discussed in Part I of this paper. In

Fig. 6. Results for mean temperature: (a) Re � 22800; (b) q00w � 16000 W=m2; (c) nondimensional mean temperature pro®le.
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Fig. 8(b), the in¯uence of Reynolds number increase on

vt at the same wall heat ¯ux can be seen. The calculated

distribution increases slightly in magnitude in the entire

¯ow ®eld as the Reynolds number increases with the

location of its maximum shifting slightly toward the

heated wall. Similar trends were reported by Petukhov

and Polyakov [6] for turbulent up¯ow of air in a heated

vertical pipe. It is not possible to decipher these small

e�ects in the measured pro®les mainly because of the

uncertainty involved.

Finally, the radial distribution of the axial turbulent

heat ¯ux is presented in Figs. 9(a) and (b). The e�ect of

increasing the wall heat ¯ux at constant Re can be ob-

served in Fig. 9(a). Two features are apparent in the

calculated results: ®rst, ut increases in magnitude; and

second, the location, where ut � 0 shifts toward the

heated wall and does not necessarily coincide with the

location where the mean axial velocity is maximum

Fig. 7. Results for temperature ¯uctuation intensity:

(a) Re � 22800; (b) q00w � 16000 W=m2.

Fig. 8. Results for radial turbulent heat ¯ux (divided by qCP):

(a) Re � 22800; (b) q00w � 16000 W=m2.
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(although they are near each other) or where uv � 0.

Fig. 9(b) shows that if the Reynolds number increases at

the same wall heat ¯ux, the ut � 0 location moves away

from the heated wall. The nondimensional axial turbu-

lent heat ¯ux pro®les are presented in Fig. 9(c). Both the

calculations and the measurements show the e�ect of

buoyancy as Gr=Re2 increases ± the nondimensional

axial turbulent heat ¯ux decreases in the vicinity of the

heated wall. The reasons for this can be explained from

the algebraic equation for ut, Eq. (19). Buoyancy a�ects

ut directly in the region, causing it to decrease.

5. Concluding remarks

Isothermal and heated turbulent liquid ¯ow through

a vertical concentric annular channel was simulated. At

nonisothermal conditions the channel inner wall was

heated and the outer wall insulated. Two near-wall

two-equation turbulence models were employed for

closure. A k±� model was used for the velocity ®eld and

a t2±�t model for the thermal ®eld, along with an ex-

plicit algebraic model for the turbulent heat ¯ux com-

ponents. Turbulent thermal ®eld models that do not use

the Reynolds analogy may allow a more realistic sim-

ulation of the ¯ow ®eld and this is demonstrated in the

results obtained. The use of the algebraic heat ¯ux

model also made it possible to correctly calculate the

production terms due to buoyancy in the k±� turbulence

model.

Generally, the numerical model successfully pre-

dicted the key features of the ¯ow including the buoy-

ancy e�ects that had been observed experimentally upon

imposition of wall heating.

Fig. 9. Results for axial turbulent heat ¯ux (divided by qCP): (a) Re � 22800; (b) q00w � 16000 W=m2; (c) nondimensional axial

turbulent heat ¯ux pro®le.
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